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AWI3TRACT

'the results of ultimate static strength tests from dif-

frent types of aircraft st-,'uctures and struetural parts ob-

t ained from several a.rcraft manufacturers were statistical-

ly analy•ed. B3y usinq test sanples with at least 3 replica-

I ions and reducinq sample data to their 'mean, all results

t'otld be ui1itied in a sintlhe population of over 300 data

points. and thtse points fitted by the Third Asymptotic dis-

t ribut ion of smallest values (Weibull distribution) . This

di:stribut ion is used as it representative' distribution of the

ultimate stronilth of an aircraft combined with the ratio be-

tween the desiIn ul limate load and the ultimate strength at-

tamined in actual tests, derived from the test data.

Ily combining the dintribution of strength with representa-

t ive distributions of qusIts in fliqht throuwqh thunderstorm tur-

bultlncte and of operational loads respectively. realistic reli-

abi lit y 'unct oions t or ult imat o load fai lurte of quiwt-sensitive

( Ionq 'anlte) and of maneuver .onsit ive (short. rant1e) air-raft

•structuures wore obtained for variOtuis .sstime3 let'vels of tt"e ul-

Simaltt, desiqul loald.

rli s .ihstr aet is 11ittvfeIt tow special #,xport " e itr,' I a tund each trallsmittal
t.o fore I till• KX,%vIvl1'm,1t % or Cot.,-o1 o 11.it •1 t a .stmI av lmt' madN, o1itIv with pri.I'r
.Approval of 0'.. metals and Ceramic.: Ilivisiotm (t4AM), Air Forct Kmatirials
I aliratorv. Wr iliht-I'.atter-wit Air ort-ce Iaet,, Ohio 4%411.
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1. Introduction

It is the purpose of this study to estimate the

structural reliability of critical parts of airfiames on the

basis of ultimate strength test data of aircraft structures

from various sources and of the spectrum of extreme gust and

maneuver loads. The Third Asymptotic distribution function

of Extreme (Smallest) Values (Weibull distribution) has been

chosen to fit the ultimate strength data obtained from tests

on aircraft structural parts. Thus the strength of any one

member of the airframe can be expressed in terms of its de-

sign ultimate load with the aid of this distribution function.

A comparison is made between the recently obtained

test data and the test results obtained by the Air Force about
1

twenty years ago. This comparison throws some light on cer-

tain aspects of aircraft structural developeent during thispexiod.

Representative thunderstorm and flight load spectra are

adopted to match the distribution function of ultimate strength,

and the risk of "ultimate load failure" is computed according to
2

a standaid procedure developed for this purpose by assuming

various values of the design gust or load factox. The associated

t1



reliability functions are subsequently evaluated in terms of the

number of load application or of flight time of the aircraft.

2, Analysis of Data

Test data from 19 different types of structures and

3e types of panels have been obtained from various aircraft

manufacturers through the efforts of the Air Force Materials

Laboratory, AFSC, WPAFB. These data have been analyzed and

evaluated according to types of loading, types of structure

a-i number of tests in each group and are summarized in Tables

1 and 2.

The expedient assumption is now made that the distri-

bution of the ultimate strength of the test specimens can be

considered to represent a single population, irrespective of

the type of structures tested and its mode of failure, as long

as this failure can be classified as "ultimate". This assump-

tior unavoidable because replications of ultimate load tests

of large structures and structural parts are and will always be

severely limited by technical and economic considerations. With-

out it reliability analysis of aircraft structures becomes ob-

viously impossible since the individual small samples are use-

less for this purpose.

Many distribution functions have been tried to fit

the experimental results, but it appears that the Weibull

distribution function prcvides a reasonably sacisfactory repre-

2



sentation of the data. The probability of survival expressed

in terms of this distribution is given by the expression

k
I --x) = exp [- (x) 1 ()
A V

where by definition Lx (x) is the probability of survival Lx (x)=

1 - P (x), the variate X = Ri/Ri, R. being the ultimate strength

of any one member in the i-th group while Ri is the group mean

of the i-th group; v is the characteristic value of the distri-

butio:. and k a scale factor.

The values of X (Ri/Ri) have been calculated for every

specimen in each group (at least 3 data values from nominally i-

dentical specimens under the same type of loading in each group)

and arranged in ascending order of magnitude. These values have

been plotted against the plotting position, where m = 1,2...n and

n = the total numbar of data points, on extreme value probability

paper as shown in Fig. 1 (data from General Dynamics is not in-

cluded, see Table 2). In Fig. 1 a straight line has been drawn

t,- fit the data points cisregarding extreme points of high strength

on the assumption that the required distribution of ultimate strength

should be representative towards the low rather than towards the

high range of data points. The extreme points at both tails of

the distribution have been identified by letters (as listed in

Tables 1 and 2).

T''e parameters of Eq. 1 are obtained graphically:

kI 31.0 and v = 1.014

3



Thus the probability of survival
31

=x exp [- x 3 (2)

When data points from General Dynamics are taken into

consideration, the extreme points of low strength deviate con-

siderably from the straight line as shown in Fig. 2. This is

simply because the individual results in several groups of Gen-

eral Dynamics data scattered rather widely within the groups, as

indicated by the identifying letters in Fig. 2 and Table 2.

The reason foi this wide scatter is not known; however its ex-

istence reveals that a small group of somewhat odd behavior can

significantly change the nature of the distribution. The equa-

tion of the straight line fitting the data in Fig. 2 is

25
LX(X = exp [- (1.017} ] (2a)

However in the following analysis only Eq. (2) is used.

Some of the experimental data are expressed in terms

of "design ultimate load" or of "limit load" (design ultimate

load - 1.5 limit load); these groups are identified by asterisks

in Tables 1 and 2. As a result the group means of these groups

can also be expressed in terms of their design ultimate load.

The values of these group means have been plotted against m/(n+l)

as shown in Fig. 3. A smooth curve has been chosen to fit these

points fairly well, except for one extreme point of high value.

She equation of this curve is

4



24
LY(y) =exp (- 0.96-) 1(3)

where Y = " U (%Ut - design ultimate load). It is assumed

that the inclusion of the test data for which the design ulti-

mate load or limit load has not been specified would not change

the form and only insignificantly change the parameters of Eq.

(3).

From Eqs. (2k) and (3) the distribution and density

functions of X and Y are easily obtained

31
F (x) =1I- L (x) = 1 - exp [- ( ).0lIx x1.4

and 24 (4)

F (y) =1 -L (Y) =l1- exp [ Y(i-

Y Y 0.96

their density functions therefore

fdF x(x) 31)30 ep31

X~x =dx 1.014 1.014~ 1,014

and (5)

fdF Y(y) 24 23 epY)24

()= dy =0.96 0.96 e0.96(X

Since R. XR.i and R. = RD it follows that

1 X

if Z = XY. Z is a random variable and RU the cmue e

sign value for a specific critical member of the aircraft struc-

ture. The distribution of Z represents therefore the distribution

5



of ultimate strength of critical members of the airframe and

thus of the airframes themselves. By definition

F zZ) - P 5Z Z) P[XY • z]

f JJ fxyXi,y)dxdy (7)
D

- r fx )f (y)dxdy
D

where D is the domain of integration as shown in Fig. 4; hence

= •® ez/xz

F (z) = fxX) I f(y)dydx f (x)F (-x)dx
Z J X fY X Y x

0 0 0

or
* 30 31 24

Fz(Z) = 31 x exp z ep ]dx
- 1. 014-) e -1.014 %0-.-6x

(8)

if the expressions of fx (x) and F y(y) are substituted into the

above integral.
31

With the abbreviation t = exp[- (x ], Eq. (8)

is transformed into

1 24 - 24/31
Fz (Z) - 1 - I exp[- 4 (- nt) ]dt (9)

z .~(Q9734) AnQ]
0

which is a form convenient for numerical evaluation. The asso-

ciated reliability function

1 24 -24/311Zz) exp[- (934) (- n t)(0)

0

6



is presented in Fig. 5 (solid curve), for all values of Z;

this curve can be fitted by the equation

19z
L z(z) = exp[- ] (11)

The small difference between Eq. (10) and Eq. (11) around

Z = 1.0 is shown in Fig. 5.

The mean value and the variance of the random variable
3

Z are

EZ = vr(l + 1/k)

and (12)

Var Z = v 2F(l + 2/k)- [Irl + 1/k)] 2

From Eq. (11) v = 0.96 and k = 19; therefore

EZ = 0.933

and

a = /Var Z = 0.061

These values suggest that, in general, the mean value of the

ultimate strength of nominally identical members of aircraft

structures is about 93 percent of its nominal design ultimate

load, while the standard deviation is about 6 percent of the

design ultimate load.

All test data expressed in terms of design ultimate

load or limit load have also been considered without regard to

the requirement of at least three test replications in each

7



group and listed in Table 3. These data have been plotted in

Fig. 6 and compared with the iesults of Jablecki's tests1

performed during the 1940's. The curve obtained from current

data indicates that the processes of design and construction

of aircraft structures with respect to ultimate load failure

have been improved within the two decades. For example Fig.

6 suggests that about 90 percent of the currently produced

aircraft structural members will sustain 80 percent of their

nominal design ultimate load without failure, whereas in the

1940's only about 60 percent of the des'.gn ultimate load was

sustained without failure by 90 percent of the structural mem-

bers. However, there has been no significant change in the

parcentage of structural parts that fail to carry about 0. per-

cent of the full nominal design ultimate load: only about one-

half of all specimens tested can be expected to sustain this

load level without failure.

An attempt has been made to improve the fit of the assumed

distribution of X by eliminating the high strength data as shown

in Fig. 1 on the assumption that as the third asymptotic dis-

tribution of smallest values, it is more representative towards

the lower range of data prints than in the high range. The new

plot is shown in Fig. 7; the equation of the straight line to

fit the data points is
33.8

L (x) = exp[- (- x :)1. 3.8

8
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with two extreme points of low strength belonginq to the same

group scattering far from the straight line.

The distribution of Y based on six group means expressed

in terms of design ultimate load or limit load has been plotted

in Fig. 8 and fitted by the equation

L (y) expf- ( .-9)24
y 0.95

On the basis of a similar analysis as discussed in the pre-

vious part of this section the probability function is obtained

L (Z) = 1 exp[- [ z 24 i t)- 24/33.8 ]dt

Z - '0.96425
0

and approximated by

L (z) = exp[- 19 (1a

as shown in Fig. 9.

A plot of the data of six groups (35 data points) expressed

in terms of design ultimate load or limit load has been presented

in Fio. 10. This diagram shows that the data scatter around the

straight line of Eq. (11). Thi. fact supports the assumption

made in the derivation of L z() that X Lnd Y are independent ran-

dom variables.

3. Reliabi1ity Analysis For Thunderstorm Turbulence
(Long Range Aircraft)

A LoDresentative spectrum of thunderstorm gust veloc-

ity4 forms a basis for the distribution function of extreme load

intensities selected for the evaluation of the risk of failure

and the determination of the reliability function for ultimate

strength failure of aircraft structures. In Fig. 1I the prob-

9



ability of exceedance is chosen as ordinate instead of the cumu-

lative frequency of load peaks per mile of flight. The spectrun,

in Fig. 11 (solid curve) is approximated by the equation

F U(u) = 0 . 2 2 4.- 022u + 0 .78,-0.20u (13)

where Fu (u) = 1 - Fu (u) and U = gust veloc4.ty in ft./sec.

For design conditions it is assumed that the gust

load is directly proportional to the gust velocity. Hence

gust load gust velocity, U A (14)

"RDU UDU

where UDU is the specific thunderstorm gust velocity correspond-

ing to the design ultimate load, and the ratio A, a random vari-

able, represents the variable gust load in terms of the design

ultimate load.

From Eq. (13) the distribution function of A is

FA(X) = 1 - £0.22 exp(-0.22 U X)+ 0.78 exp(-0.20 UDUX))

(15)

The reliability function LN (bO is defined as the prob-

ability of survival of the aircraft structures under a series of

N load applications, so that

L (N) = N f (z)dz (16)
N I FA~z) fz~d

0

where FA(z) is given by Eq. (14) and fz (z) can be obtained

from Eq.(11).

For practical purposes the following first approxima-

tion of Eq. (16) can be used:

10



LN (N) exp(- N pf) for N pf 1 1 (17)

where pf is the probability of failure under single load a,•Dli-

cation obtained from

= FZF X) fA (X)ld(1
Pf Z

0

From Eq. (I.11)
19

F (X) 1 - L(k) = l- exp[- (1- (9)
z z 09

and by differentiating Eq. (15) w:.th respect to X,

f A(W) = UDU 0.0484 exp(- 0.22 U DUX)+ 0.156 exp(-0.20 U DU)]

(20)

Substituting the above expressions into Eq. (18),

G 19
pf= U 11 - exp[-(0--9) ])[0.0484 exp(-0.22 UDUx)

0

+ 0.156 exp(-0.20 UDU X)]dX (21)

With the substitution v = exp(-X), -,he above integral is trans-

formed into the form,
1 19

Pf DU , 11-exp(-(- 1.96) (}[0.0484u) (0.22 UDU-l.0)
0 (22)

+ 0.156w (0.20 UDU-f.0)]dw

which is used for numerical calculation.

For various valies of UDU' Pf can be evaluated from

Eq. (22) , and the reliability function obtained from Eq. (17)

as a function of the number of gust load applications. Four values

11



of UDU have been assumed: UDU 90 ft./sec., 75 ft./sec., 60

ft./sec. and 45 ft./sec.; the corresponding values of pf and

the function L N(N) are shown in Fig. 12.

The proportion of flight through thunderstorm tur-
5

bulence is about 0.1 percent of flight distance. It is

assumed that 10 gusts per mile are encountered by an aircraft

during thunderstorm flight at 10-20,000 ft. level. Assuming

further that the design life of the aircraft is 5 x 104 hours

and the average flight velocity is 400 miles per hour, the num-

ber of load applications is converteJ into time of flight in

hour (4 gusts are equivalent to 1 hour of flight). The relia-

bility function of ultimate strength of aircraft structures can

therefore be expressed as a function of flight hours as shown

in Fig. 12.

In a recent report6 the hours to reach or exceed ulti-

mate strength have been computed for two aircraft designed by

Lockheed: for the L-188 this figure is 7.14 x 107 hours and for

the L-749 2.38 x 108 hours. With these data the reliability

functions for these two aircraft have been plotted in Fig. 12.

The difference between the present analysis and the Lockheed

analysis is probably due to the fact that the latter is apparent-

ly involved only with the random character of the applied load

while the strength is assumed constant, while in the present

analysis the statistical character of strength is combined with

12



that of the gust load. The returns period of failure accord-

ing to this analy'sis are 2.42 x 106 hours for UDU = 90 ft./sec.,

2.02 x 105 hours for UDU = 75 ft./sec., 1.52 A 104 hours for

UDU = 60 ft./sec. and 1.06 x 103 hours for UDU = 45 ft./sec.

The values of pf computed on the basis of Eq. (11a) are

1.20 x 10-7 , 1.42 x 10-6 , 1.84 x 10 and 2,54 x 10-4 by assuming

UDU = 90 ft./sec., 75 ft./sec., 60 ft,/sec, and 45 ft./sec. re-

spectively. It car be seen that there is no significant differ-

ence between the values of pf by adopting either Eq. (11) or

Eq. (11a) for the ultimate -trength distribution of the criti-

cal parts of aircraft structures.

4. Reliability Analysis For Operational (Maneuver) Loads
(Pighter Aircraft)

A representative spectrum of operational (maneuver) load

factors has been constructed on the basis of flight records from
7

the F-1O5B and F-106A aircraft. In Fig. 13 the probability of

exceedance of the load factor n has been plotted for both aircraft

and an intermediate spectrum selected for the reliability analysis

which can be approximated by the equation
- W = ,935e 1.77n 3.32n

F(n) 2 9 3 5 l17 7 n + 13.830e " (23)

where F (n) = 1 - F (n),n n

The assumption is now made that, for purposes of design the

operational lo-d is proportional to the load factor or

SLperational load load factor
Ru

RDU OU1
13



where nDU is the design load factor of ultimate load design

and the ratio A, a random variable, represents the variable

maneuver load factor in terms of the design ultimate load.

From Eq. (23) the distribution function of A is obtained

FA(x) = 1 - (2.935e-l' 7 7 nDUX + 13.830e-3'3 2 nDUX] (25)

and therefore

fA(X) = nDU [5.195e- . 7 7 nDUX+ 4 5.916 e- 3 ' 3 2 nDUX] (26)

The probability of failure according to Eq. (18) with FZ ()

from Eq. (19)

1PI n 1-ex1( n w. 19,.pf = nDU j[i- expf-(-0--•) (27).
LIo 9)J (27)

(5.195w(l. 7 7 nDU-l)+ 45.916w (3. 3 2 nDU-l)]dw

where w - exp(-Xl.

Equation (27) has ban numerically exaluated for the ulti-

mate design load factors nDU = 13, 11, 9 and 7 and the correspond-

ing reliability functions have been constructed in accordance with

Eq. (17) and are represented in Fig. 14 in terms of the number of

load cycles and of hours ot flight. The conversion is based on

the assumption that roughly 102 load cycles are equivalent to one

hour of flight at an average of 350 to 400 mph in accordance with

the flight records.

14
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